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A B S T R A C T   

With the rapid global population growth and industrial development, the promotion of sustainable agricultural 
production and environmental conservation has attracted great public and research interests. Application of 
carbonaceous materials (e.g., activated carbon, biochar, and hydrochar) for soil improvement and environmental 
remediation is highly recommended because of their economic viability and applicability. Hydrochars, carbo-
naceous solid materials with unique physicochemical properties and produced by hydrothermal carbonization 
(HTC) of biomass, have received wide attention due to their increasing applications as soil amendments, slow- 
release fertilizers, adsorbents, and energy sources. This review highlights the production of hydrochars from 
dry and wet feedstocks and summarizes the physicochemical properties including surface structure, porosity, 
nutrient content, and stability. Applications of hydrochars for soil improvement and environmental remediation 
are systematically analyzed and reviewed on the aspects of improving soil physicochemical and biological 
properties, affecting greenhouse gas emission, and remediating heavy metals and organic pollutants in water and 
soil environments. Finally, the knowledge gaps in the production, characterization, and application of hydro-
chars are addressed and the future research directions toward the development of hydrochar technology are 
proposed.   

1. Introduction 

Recently, the generation of large amounts of biowastes such as 
agricultural waste, municipal sludge, and food waste have raised serious 
management and disposal challenges globally [1,2]. For example, 
wastewater treatment plants (WWTPs) annually produce 12.7 million 
dry tons of municipal sludge in the U.S. 230 million tons in Europe, 30 
million tons in China, and 3.0 million tons in Australia [3,4]. The 
worldwide production of municipal sludge was around 1.3 billion tons 
in 2017 [2]. In addition, agricultural waste, which is mostly referred as 
to the residues and by-products of agriculture (e.g., crop straws), is also 
largely produced. For instance, the annual generation of agricultural 
waste is 140 billion tons globally [5], while this number was about 819 
megatons in 2014 in China [6]. Many of these biowastes are rich in 

organic carbon (OC), nitrogen (N), phosphorus (P), and other beneficial 
elements (e.g., Ca, Mg, and Fe). However, the current management 
strategies, including burning, landfills, composting and bio-drying, are 
typically lack of value-added utilization technologies and easily result in 
serious issues, such as resource loss, environmental pollution, and 
greenhouse gas (GHG) emission [2,7], as well as increasing financial 
burdens on various levels of governments [8]. For example, it is esti-
mated that food waste contributed to one sixth of the methane emissions 
from landfills in the U.S. [9]. The cost of municipal sludge management 
in a WWTP could reach to 57% of the total operation cost [10]. 
Particularly, ever-increasing biowaste such as food waste, sewage 
sludge, and pig manure containing high moisture (≥30%), potential 
source of nitrogen and phosphorus [11], makes big challenges to apply 
the traditional technologies like pyrolysis and incineration to recover 
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energy or value-added products, because of the extra energy input for 
dry treatment [12]. Therefore, the development and optimization of 
sustainable technologies for high-value utilization of and resource re-
covery from biowastes (particularly for the wet biowastes) are urgently 
needed. 

Hydrothermal carbonization (HTC) is a promising technique to 
achieve the target of comprehensive utilization of biowastes to produce 
a carbon (C) rich solid product named as hydrochar [7,13]. Converting 
biomass into hydrochar, a primary product of HTC, could be an 
environmentally-friendly measure to achieve resource utilization and 
produce value-added products [13-15]. Compared to other thermal 
technologies such as pyrolysis, gasification, and combustion, which 
typically require pre-drying for the wet biomass, HTC can be applied to 
both dry and wet biowastes [16], thus requires less energy from the 
feedstock [17]. Hydrochars, C-rich materials with high contents of 
oxygen-containing functional groups and nutrients [7] and high energy 
density [18], can be used as adsorbents [19], catalysts [20], soil con-
ditioners [13], and bioenergy sources [7]. Hydrochars in certain aspects 
(e.g., rich C, application as adsorbents or soil amendments) are similar to 
biochars, a type of solid carbonaceous and recalcitrant materials derived 
from pyrolysis of biomass [1,21,22]. In the past decade, biochars have 
been highly recommended as promising solutions for sustainable agri-
cultural production and environmental remediation [23-25]. Recently, 
increasing studies reported the applications of hydrochars as soil 
amendments [7,26]. Hydrochars have also been tested as promising 
adsorbents for heavy metals [27,28], organic pollutants (e.g., pharma-
ceuticals, dyes, pesticides) [28,29], and excessive nutrients (e.g., phos-
phate and nitrate) [30,31] in water and soil environments. Even though 
hydrochars have the same applications (e.g., adsorbent, catalyst, and 
soil amendment) with biochars, they are very different in feedstocks, 
production technologies, and characteristics [22,32]. 

The HTC process and its influences on physicochemical character-
istics of hydrochars such as yield, morphology, surface structure, and 
nutrient availability, have been extensively studied [13,33-36]. 
Increasing studies also reported the application of modified hydrochars 
in improving soil fertility and remediating polluted soils and waters 
[15,27,28,37]. Several reviews summarized the formation of hydrochars 
[22,38], general application of hydrochars in energy recovery and 
agricultural production [7,22]. However, these reviews mainly focused 
on HTC conditions and physicochemical properties of hydrochars 
[7,17,39]. To the best of our knowledge, the comparison of hydrochars 
and biochars in regard to their production, characterization, and impact 
on soil improvement and environmental remediation is very limited. 

This work aims to: 1) make a clear comparison among the technol-
ogies and feedstocks for hydrochar and biochar production; 2) summa-
rize the physicochemical characteristics of hydrochars derived from 
different feedstocks; 3) illustrate the potential applications of hydro-
chars for soil improvement in terms of soil physicochemical character-
istics, fertility, productivity, GHG emission, and microbial community; 
and 4) review the application of hydrochars in remediating soils and 
water bodies contaminated by heavy metals, nutrients, and organic 
pollutants. These aspects are brought together to highlight the current 
progresses and limitations of hydrochar research and provide future 
opportunities for facilitating the development of hydrochar technology; 
and 5) address the research gaps and provide key future directions for 
facilitating the sustainable development and application of hydrochar 
technology. Ultimately, we aim to highlight the current progresses and 
limitations of hydrochar research and address the question: Can 
hydrochars be used as sustainable alternative to biochar in agricultural 
production and environmental remediation? 

2. Comparison of the technologies for hydrochar and biochar 
production 

2.1. Hydrothermal carbonization (HTC) vs pyrolysis 

Difference in thermal treatment conditions is one of the primary 
differences between hydrochars and biochars [1,22]. Thermal technol-
ogies for hydrochar and biochar production are summarized in Table 1. 
HTC is a thermochemical process of converting biomass with high 
moisture into hydrochars at the relatively low temperatures 
(180–375◦C) in short residence time ranging from minutes to hours 
under autogenerated pressure (2–6 MPa) in the presence of subcritical or 
supercritical water environment [1,40]. It is noted that autogenous 
pressure of water in the inner chamber is completely sufficient in the 
HTC process. Pyrolysis, used for biochar production, is a thermal 
decomposition technology of converting biomass at the relatively higher 
temperatures (300–1200◦C) in the absence of O2 or limited O2 condi-
tions [41-43], which can be classified into slow, intermediate pyrolysis, 
fast, and flash pyrolysis (Table 1). Compared to pyrolysis, HTC is a 
promising thermal technology with attractive advantages including high 
conversion efficiency, elimination of pre-drying requirement, and rela-
tively low heating temperature (HTT) [13]. HTC is generally low energy 
demanding due to its lower HTT (180–375◦C) and possibility of direct 
application of wet feedstock (e.g., sewage sludge, animal manure, and 
kitchen wastes). However, large amount of energy input is needed for 
biochar production from biomass pyrolysis, particularly because of high 
HTT (> 400◦C) for long residence time of days to weeks and necessity of 
the dry pre-treatments of feedstock [1,34,35]. The key parameters of 
HTC include feedstock, HTT, reactor, hydrous conditions, residence 
time, pressure, solid load, catalyst, and pH [44-46]. Among them, HTT is 
one of the main factors affecting physiochemical properties of hydro-
chars [47]. Pressure also plays an important role in the transformation of 
biomass during HTC [1], which can dictate reaction routes [46], and 
characteristics of the final products [35]. Additionally, the water in HTC 
is subcritical or supercritical (the critical point 374◦C), lowering the 
activation energy level of hemicellulose and cellulose in biomass, thus 
facilitating the degradation and depolymerization of these components 
[35]. Notably, water is highly recommended as a reacting medium in 
HTC because it is cheap, non-toxic, and is inherently present in the wet 
biomass. Moreover, the solid to liquid ratio in HTC should be chosen 
properly and the threshold should be carefully examined. For example, 
Xiong et al. found that 0.1 g mL− 1 was an ideal solid–liquid ratio for 
swine manure to produce high yield of hydrochar [48]. Normally, the 
addition of basic additives (e.g., NaOH, Ca(OH)2) and acidic additives 
(e.g., HCl, H2SO4) in HTC serves different purposes such as speeding up 
thermal reaction, increasing bio-oil yield, and modifying the hydrochars 
with desired characteristics (e.g., nanopores, large surface area) 
[49,50]. Alkaline catalysts such as NaOH, KOH, and Ca(OH)2 could 
facilitate water–gas shift reaction under the supercritical water condi-
tions [51], which would result in low solid yield and production of 
hydrogen-rich gas by accelerating hydrolysis and decomposition of 
lignin [52]. Acids catalysts such as HCl and H2SO4 may make a hydro-
char with great surface area, high pore volume, and small pore size [52], 
by promoting hydrolysis, deamination, and dehydration of feedstock 
during hydrothermal processing [51]. However, it should be carefully 
considered for selecting a catalyst, which could cause the pitting of 
reactor or environmental pollution. Thus, more studies should be con-
ducted to use green and environment-friendly additives during HTC. 
Recently, a few studies reported that hydrochars also can be obtained as 
byproducts from hydrothermal liquefaction (HTL) and hydrothermal 
gasification (HTG); these two hydrothermal techniques are used to 
produce bio-oil and syngas, respectively (Table 1). Thus, these two hy-
drothermal technologies should be paid more attention in future. Py-
rolysis technology is commercially available for high-value products (e. 
g., biochar, bio-oil), whereas the commercial implementation of HTC 
technology is still in infancy. Although several studies compared the 
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differences of these technologies [22,53], the understanding of their 
economic feasibility and energy cost at different scales for commercial 
hydrochar production is still limited. Therefore, more future studies 
should be focused on the commercial and large-scale hydrochar pro-
duction with commercial implementation of HTC technology. Notably, 
reducing energy input and economic cost in HTC should be fully 
considered, and the application of solar energy, continuous reactors, and 
deep learning techniques can be expected. 

Formation of biochars from biomass pyrolysis mainly consists of 
three reaction stages, dehydration and decarboxylation at the first stage, 
depolymerization at the second stage, aromatization and intermolecular 
rearrangement at the third stage, which has been extensively reviewed 
in previous studies [21,57]. A wide range of reactions, including hy-
drolysis, dehydration, decarboxylation, aromatization, and condensa-
tion polymerization, may occur during HTC [40,44,61,62]. In the 
hydrolysis stage, hemicellulose starts to hydrolyze at 180◦C, whereas 
cellulose starts at around 230◦C and lignin starts at above 260◦C, leading 
to the formation of oligomers like cellobiose, cellotriose, cellotetraose, 
cellopentaose, and cellohexaose [40,63]. Water at this stage in the form 
of hydronium ions has high values of ionic product of H+ and OH–, 
facilitating the hydrolysis process [40]. Then dehydration and decar-
boxylation occur immediately, involving removal of water and carbon 
dioxide from the biomass matrix [64], accompanied by the production 
of organic acids (e.g., acetic, lactic, propionic, levulinic and formic 
acids) and aldehydes [65,66]. Condensation and polymerization are the 
next stage of HTC, which are influenced by intermolecular dehydration 
or aldol condensation. Soluble polymers are formed when the monomers 
such as glucose and fructose undergo these reactions. Finally, aromati-
zation takes place to form solid hydrochars because of the decomposi-
tion of the oligo and monosaccharides, [39,54]. However, these 
reactions for different feedstocks (e.g., sewage sludge, animal manure, 
plant residues) are much complicated and still unclear. Further studies 
should be conducted to understand the underlying reactions of hydro-
char formation from different feedstocks using different hydrothermal 
technologies. 

HTC inevitably produces a large quantities of process water, mainly 
containing phenolics, acetic acid, formic acid, glycolic acid, levulinic 
acid, 2,5-hydroxyl-methyl-furfural (HMF), furans, heavy metals (e.g., 
Cu, Zn, As, Ni, Cd, and Pb), and nutrients (e.g., P, N, Ca, Mg, and K) 
during decomposition of biomass polymers [1,67]. Products like levu-
linic acid and 2,5-HMF, as the high-quality intermediate compounds, 
could act as potential precursors for producing value-added liquid fuel 
and chemicals [68-70]. Moreover, nutrient characteristics of process 
water imply their potentials as liquild fertilizers in agricultural appli-
cation [71-73], expanding the utilization pathway of the byproducts of 
hydrochars. However, occurrence of the potential toxic compounds such 

as heavy metals and organic compounds could pose great environmental 
risks if they were not effectively treated before discharge [74]. At pre-
sent, most of these studies on process wastewater focused its recircula-
tion [75-77] and environemtal risk assessment [78,79]. However, the 
treatment of process water from hydrochar production received little 
attention. In the future, an industrial HTC plant will face big challenges 
for its operation due to the continuous production of process water. 
Therefore, it is critically urgent to develop effective technologies to treat 
or recycle the process water in order to avoid potential environmental 
risks and decrease cost for industrial scale produciton and application of 
hydrochars. Notably, recovering value-added products like levulinic 
acid, 2,5-HMF, two of the top 12 value added chemicals from biomass 
proposed by US Department of Energy, and P from the process water 
could be a feasible strategy to reduce the economic cost of HTC, which 
should be further explored. 

2.2. Wet biomass vs dry biomass 

Besides the thermal techniques, type of biomass feedstock is another 
important difference for hydrochar and biochar production (Fig. 1). HTC 
can be applied to a broad range of conventional biomass feedstocks (e.g., 
crops straws, forest wastes) and unconventional biomass feedstocks (e. 
g., food wastes, sewage sludge, and algae) without any pre-drying [54]. 
Animal wastes, sewage sludge, kitchen wastes, microalgae/macroalgae, 
and fresh crop residues, are considered as wet feedstocks, which 
generally contain high content of moisture (> 30%) [1]. Dry biomass 
such as air-dried agricultural residues and woody wastes generally 
containing < 30% moisture content is suitable for biochar production 
using pyrolytic technologies (Table 1). Notably, wet and dry biomass 
can be used in HTC for hydrochar production with less energy since 
drying pre-treatments of the wet biomass is not required (Table S1). In 
contrary, pre-treatments are required for biochar production via pyrol-
ysis, ultimately increasing the demand of energy, labor, and the cost of 
biochars [22,39]. Additionally, increasing number of studies showed 
that the hydrochars prepared from single feedstock could have some 
uncertainties in their properties and applications in soil improvement 
and remediation [80,81], and could also limit their sustainable indus-
trial production. Thus, the blended feedstock containing two or more 
types of biomass wastes are proposed to improve the yield and physi-
cochemical properties of hydrochars, because of the potential of syner-
gistic and antagonistic effects between the different feedstocks [82-84]. 
However, more studies need to be conducted to understand the critical 
variables determining the hydrochar properties, as well as the potential 
mechanisms responsible for upgrading the hydrochar properties. Over-
all, these aforementioned differences among the thermal techniques and 
feedstock would result in significant differences regarding their 

Table 1 
Comparison of the thermal technologies for production of hydrochar and biochar.   

Hydrothermal treatments Pyrolysis 

Hydrothermal 
carbonization (HTC) 

Hydrothermal 
liquefaction (HTL) 

Hydrothermal gasification 
(HTG) 

Slow 
pyrolysis 

Intermediate 
pyrolysis 

Fast 
pyrolysis 

Flash 
pyrolysis 

HTT 180–375◦C 200–400◦C 350–700◦C 300–700◦C 300–500◦C 500–1000◦C 400–1000◦C 
RT Minutes–hours 1–120 min 30 s–30 min Hours–weeks < 20 s < 1 min < 30 min 
Pressure autogenous pressure (2–6 

MPa) 
10–25 MPa 20–50 MPa 0.1 MPa 0.1 MPa < 5 MPa < 0.5 MPa 

Main 
products 

Hydrochar Bio-oil Syngas Biochar Bio-oil Bio-oil Syngas  

Feedstock Dry Agricultural wastes, woody wastes, crop residue Agricultural wastes, woody wastes, crop residue 
Wet Fresh vegetable wastes, sewage sludge, animal 

wastes, algae 
Fresh vegetable wastes, sewage sludge, animal wastes, algae (Note: wet feedstock needs to be dried 
before pyrolysis)  

Reaction mechanism Hydrolysis, dehydration, decarboxylation, condensation, 
polymerization, and aromatization 

Dehydration, aromatization, decarboxylation, polymerization, intramolecular 
condensation, and rearrangement reactions 

Reference [1,17,22,54] [1,55] [54,56] [22,57] [43,58] [41,42,59] [42,60] 

HTT: heating temperature; RT: residence time of HTC process. Pressure: the pressure for fast and flash pyrolysis is generally higher than 1 atmospheric pressure (0.1 
MPa), but lower than 5 MPa and 0.5 MPa, respectively. 
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characteristics, applications, and implications between hydrochars and 
biochars [39]. 

3. Characteristics of hydrochars 

3.1. Yield 

The solid mass yields of hydrochars production from HTC greatly 
vary, ranging from 28.6 to 79.9% (Fig. 2a), whereas those of biochars 
produced from pyrolysis ranges at 25–45% [85]. HTT plays a key role in 

hydrochar yields [1]. Regardless of the types of feedstocks, the mass 
yields of hydrochars generally decrease with increasing HTT (Fig. 2a). 
Ash contents of hydrochars vary at 14.5–66.2% (Fig. 2b). As HTT in-
creases from 150 to 200◦C during HTC, generation of organic acids (e.g., 
acetic, formic, lactic, and levulinic acid) via dehydration and decar-
boxylation facilitates the dissolution of mineral components in the 
feedstock [1], consequently decreasing the mass yields (Fig. 2a) and ash 
contents of hydrochars (Fig. 2b). Notably, the ash contents of hydro-
chars derived from the feedstocks containing high contents of non- 
soluble minerals such as animal manure, paper sludge, and sewage 

Fig. 1. Conceptual diagram illustrating the differences between biochar and hydrochar, including their typical feedstock, production processes, and characteristics. 
For pyrolysis, dry feedstocks are typically treated at high temperatures (300–1000◦C). The final product is a C-rich biochar with high surface area but low nutrient 
content [41,43]. For HTC, wet and dry biomass is treated at lower temperature (180–350◦C). The final product is a C-rich hydrochar with more O-containing 
functional groups and high nutrient content [34,61]. 

Fig. 2. Effect of heating temperature on (a) hydrochar yield, (b) ash content, (c) C content, (d) H content, (e) O content, and (f) N content. Generally, the changes in 
hydrochar characteristics depend on the type of feedstock and HTC conditions. Data obtained from the reported studies [14,33,47,85,88-101] 
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sludge, increase with increasing HTT (Fig. 2b). In addition, generation of 
organic acids (e.g., acetic, formic, lactic, and levulinic acid) via dehy-
dration and decarboxylation results in the acidity of hydrochars at pH 
4.6–7.4 (Fig. S1). The feedstock is another important factor determining 
hydrochar yield [39,86]. Lignocellulosic biomass (e.g., woody wastes, 
crop straws) generally results in higher yields of hydrochars than those 
of non-lignocellulosic biomass (e.g., sewage sludge and kitchen wastes) 
under the similar hydrothermal conditions [39]. For example, Tag et al. 
found that the yields of hydrochars derived from sunflower stalk were 
40.5–68.1%, higher than those (32.8–66.2%) from poultry litter and 
algal biomass at the same HTC conditions [87]. Thus, HTT needs to be 
determined based on the types of feedstocks to optimize hydrochar 
yields. Similarly, biochar yields are also mainly controlled by feedstock 
and HTT during pyrolysis, which has been well reviewed [21]. Among 
the pyrolysis technologies, slow pyrolysis is widely performed for pro-
ducing biochars that widely used as adsorbents in remediation of water 
and soil pollution and as soil amendments in improving soil quality and 
productivity (Table 1). 

3.2. Elemental composition 

Like biochars, hydrochars are mainly composed of C, H, O, N, and 
other mineral elements such as K, Ca, Mg, Fe, and Al, originating from 
biomass feedstock (Table S1). Total C, H, and O contents in hydrochars 
largely vary, ranging 44.6–77.4%, 1.7–6.1%, and 3.2–44.6%, 

respectively (Fig. 2c-e). Along with elemental C, N, O, and H, other el-
ements like K, Na, Mg, Ca, Al, Si, S, and Fe are also present in hydrochars 
[102], but the contents of these elements are generally much lower than 
those in biochars [103,104]. HTT largely affects hydrochar elemental 
compositions [39]. As the HTT increases, C contents of hydrochars 
generally increase due to the enrichment via carbonization (Fig. 2c). In 
contrast, H and O contents decrease due to decarboxylation and dehy-
dration (Fig. 2d, e). C contents of hydrochars also depend on the type of 
feedstocks. Hydrochars derived from lignocellulosic biomass (e.g., 
woody wastes, crop straws) contain more C than those derived from non- 
lignocellulosic biomass such as manure and sewage sludge [33,39]. 
Compared to hydrochars, biochars have higher contents of C ranging 
30–90% because of the higher degree of carbonization resulting from the 
relatively higher HTT (Table 1). This is further evidenced by the results 
of the van-Krevelen diagram (Fig. 3). The atomic ratios of O/C and H/C 
of biochars are distinctly lower than those of hydrochars, confirming 
lower degree of carbonization of hydrochars relative to biochars [53]. 
These results also implied that hydrochars would be less stable than 
biochars in soils when used for C sequestration. However, more efforts 
are still needed to explore the hydrochar potentials for long term C 
sequestration in combating with global climate change. 

The N contents of hydrochars, ranging 0.7–7.5% (Fig. 2f), are 
determined by the feedstocks and HTC conditions. Hydrochar feedstocks 
generally contain inorganic N (e.g., NO3

–-N, NH4
+-N, and NO2

–-N) and 
organic N (e.g., proteins, amino sugars, and nucleic acids) [97,98,100], 

Fig. 3. van-Krevelen diagram for biochars (tri-
angles) and hydrochars (circles) produced from 
different feedstocks (squares) reported in the 
literature. MS: maize straw, PT: peat, ES: egg shell, 
FR: fish residue, BR: breadcrumbs, CR: cooked 
rice, FW: food waste. BC stands for biochar and HC 
stands for hydrochar. For example: BR-BC300 
represents the biochar derived from breadcrumbs 
at 300◦C, whereas BR-HC250 stands for the 
hydrochar derived from bread crumbs at 250◦C. 
Data were obtained from the reported studies 
[33,105,106].   
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which would be subjected to complex transformation during HTC 
(Fig. 4). Inorganic N with low thermal stability will be converted to 
liquid and oil phase by hydration and condensation of biomass [107]. 
For organic N, several reactions would occur during HTC (Fig. 4). For 
example, the deamination of proteins results in the formation of amino 
acids, which are solved in water and then hydrolyzed to NH4

+-N [108]. 
HTC can also hydrolyze proteins to amino acids by breaking the C-N 
bonds via ring condensation and sequential cyclization, transforming 
into heterocyclic-N species like quaternary-N, pyrrole-N, and pyridine-N 
in hydrochar [108]. Similar heterocyclic-N and inorganic N species were 
also found in biochars [21,109], which have been well reviewed 
[110,111]. Total P in hydrochars range 5–95.4 mg g− 1 (Fig. 5a). The 
reported P species in hydrochars include organic P (e.g., nucleic acids 
and phospholipids) and inorganic P (e.g., octacalcium phosphate, 
apatite, and hydroxyapatite) [14,112,113]. The most abundant P species 
in hydrochars is ocatcalcium phosphate (20–80%), and its content in-
creases with increasing HTT due to stabilization of P with other elements 
such as Ca and Mg in the feedstock like sludge (Fig. 5b). NaHCO3 and 
NaOH extractable P contents, representing the moderately labile frac-
tion of P and Fe/Al associated P respectively, increase as HTT increases 
due to the stabilization of H2PO4

- and HPO4
2- (Fig. 5c). Also, the content 

of apatite (AIP), one of the most stable forms of P, increases with 
increasing HTC temperature (Fig. 5d). Additionally, it would be a 
promising strategy to sustainably achieve the goals of P recovery and 
recycling with the help of hydrochars prepared from the biowaste like 
sludge and food waste [114,115]. However, high levels of heavy metals 
in the feedstocks could concentrate in the P-rich hydrochars (Table S2), 
complicating the recovery processes and application in soils. More in-
vestigations in future should be merited for exploring the hydrochar- 

based technology for P recovery and recycling without heavy metal 
pollution. 

Heavy metals such as Cu, Zn, As, Ni, Cd, and Pb have been widely 
reported in hydrochars (Table S2). They are mainly derived from feed-
stocks contaminated by heavy metals, such as sewage sludge, swine 
manure, and poultry litter [86,116]. For instance, the concentration of 
Cu, Zn, Cd, Pb, Ni and As in the hydrochars derived from sewage sludge 
ranges 377–438, 1581–2841, 4.98–6.39, 81–90.9, 41.7–52.3, 7.10–11.5 
mg kg− 1, respectively. For the hydrochars derived from the other 
biomass (e.g., cellulose, lignin, xylan, sunflower residue, and municipal 
solid waste), the concentration of Cu, Zn, Pb and Ni was 2.51–168, 
21.2–47.7, 11.4–28.7 and 1.59–24.4 mg kg− 1, respectively [117-119]. 
The occurrence of heavy metals in hydrochars can pose serious envi-
ronmental risks during their application [120], which is ignored in the 
past. Hence, future studies on minimizing heavy metal contents in 
hydrochars are warranted to avoid their environmental risks. 

3.3. Morphological and surface characteristics 

Morphological characteristics of hydrochars, including shape, par-
ticle size, pore structure, and surface area, can be considered for their 
targeted applications such as adsorbents [53], catalysts [53], and soil 
amendments [122]. The microstructures of hydrochars derived from 
different feedstocks are summarized in Table 2. The surface morphology 
and structure of hydrochars are largely controlled by the type of feed-
stocks [32]. Hydrochars with spherical morphology generally show 
granular surfaces with floc, lamellar, or honeycomb structures, resulting 
from the decomposition of carbohydrates in lignocellulosic feedstock 
[123]. In contrast, biochars derived from lignocellulosic materials 

Fig. 4. Reactions of N in hydrochar feedstock during HTC. Inorganic N could be converted to liquid and gas phases at the initial stage of HTC. Some parts of the 
organic N may go through chemical reactions of hydrolysis and deamination, and other parts would be hydrolyzed to small fractions via ring opening, ring 
condensation, polymerization, and cyclization, thus resulting in the formation of heterocyclic N in hydrochars [97,98,100,109,110]. 
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generally processes turbo-strategically arranged graphite-like layers 
[1,32,54]. Hydrochars display as small particle sizes with discrete 
spheres or agglomerates [36], while biochars exhibits flattened parti-
cles, particularly those produced at higher temperatures [21]. HTC at 
low temperatures of 150–200◦C triggers the degradation of carbohy-
drate, protein, and lipids in feedstocks (e.g., sewage sludge, animal 
manure, and plant residues), resulting in rough surfaces, high contents 
of pores and cavities, and filamentous structure [86]. HTC at relatively 
high temperatures of 200–250◦C produces rougher surfaces and more 
cavities and micropores due to dehydration, deformation, fusion, and 
volatile matter release [36]. Above 250◦C, the pore structure of hydro-
char starts to collapse and shrink due to the reformation of biopolymers, 
thus decreasing its porosity and surface area [124]. In addition to HTT, 

the pH of process water in HTC induces significant changes in hydrochar 
morphology [125]. Acidic water during HTC causes spherical and 
granular porous structures [125], while alkaline water produces cam-
bium lamellar structures of hydrochar [125]. Surface areas of hydro-
chars range 1.1–30.6 m2 g− 1 (Fig. S2). Compared to biochars, 
hydrochars generally have low surface areas due to the relatively low 
HTT and short residence time, resulting in incomplete pore development 
[126,127]. Type of feedstock plays an important role in hydrochar 
surface areas (Fig. S2). Hydrochars derived from lignocellulosic mate-
rials (e.g., canola straw, wheat straw, hickory, peanut hull, and rice 
straw) exhibit higher surface areas than those of non-lignocellulosic 
materials (e.g., sewage sludge, animal manure). In addition to feed-
stock, HTT also significantly regulates hydrochar surface area [99]. As 

Fig. 5. P species and contents in different feedstocks and their derived hydrochars produced at different heating temperatures (HTTs). (a) total P content in 
hydrochars derived from different feedstocks. (b) Different organic and inorganic P species in hydrochar analyzed by P K-edge XANES. P in hydrochar generally 
bonds with various metals, such as Mg, Al, Ca, and Fe to form different inorganic fractions (Mg3PO42: Mg-associated, P; FePO4: Fe-associated, P; AlPO4): Al-associated 
P; P-ferrihy: phosphate sorbed on ferrihydrite; P-Alumina: phosphate sorbed on γ-alumina). SL: sludge. (c) Chemical forms of P extracted by H2O, NaHCO3, NaOH, 
and HCl solutions following the Hedley sequential extraction method [121], representing readily soluble P, exchangeable P, Fe/Al mineral adsorbed P, and insoluble 
P, respectively. SL: sludge; WL: wetland plants; SM: swine manure; CM: chicken manure; BM: beef manure. (d) Relative abundance of organic and inorganic P (OP: 
organic P; NAIP: non apatite inorganic P; AIP: apatite inorganic P). SL: sludge; SM: swine manure. The data after the names of the feedstock represent the HTC 
temperature. For example, SL-170 stands for the sludge hydrochar produced at 170 ◦C. The data were obtained from the reported studies [14,96,101,112,113,116]. 
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the HTT increases to 250◦C, the enhanced carbonization of biomass 
would result in development of abundant pores in hydrochars [128], 
while higher temperature (> 250◦C) decreases the surface area due to 
the blockage of pores by condensed volatile matters and sedimented 
minerals [129]. Moreover, low pH of the process water will facilitate the 
hydrolysis of carbohydrate and enhance microsphere formation, thus 
increasing hydrochar surface area at the early stage of HTC [126]. 
However, relative to biochars, the morphological characteristics of 
hydrochars have not been fully understood yet. Future research should 
address the customized production of hydrochars with desired 
morphological characteristics for targeted applications. 

3.4. Surface functional groups 

Surface functional groups, one of the most important characteristics 
of hydrochars, contribute to their high activity and reactivity in envi-
ronmental remediation and soil conditioning [21,53]. O- and N-con-
taining functional groups are the two most important groups in 
hydrochars and biochars [17,53,55]. O-containing functional groups, 
including hydroxyls (–OH), carboxyls (–COOH), ketones (-C = O), and 
ethers (C-O), are mainly derived from hydrolysis, dehydration, 
condensation, and polymerization of organic components such as car-
bohydrates and lignins in biomass during HTC [7,17,53,86]. However, 
high temperature (e.g., 500–700◦C) of pyrolysis produces lower O- 
containing functional groups in biochars. For instance, Zhang et al. re-
ported that the contents of O-containing functional groups in a hydro-
char derived from coffee ground waste at 160◦C were 13.1–104% higher 
than those of the biochar derived from the same feedstock at 400◦C and 
500◦C [104]. Thus, low contents of these groups trigger higher stability 
of biochars toward microbial and chemical degradation relative to 
hydrochars [47,86]. Compared to O-containing functional groups, N- 
containing groups such as pyridinic-N, pyrrolic-N, quaternary-N, and 
pyridinic-N-oxide in hydrochars have received less attention [133]. 
Thus, more efforts are necessary to understand the formation and 
function of N-containing functional groups in hydrochars to expand the 
potential benefits of hydrochars in different applications. 

4. Application of hydrochars for soil improvement 

Increasing soil degradation has posed serious threats to agricultural 

production, ecosystem sustainability, and global climate [134]. Sup-
plement with soil organic carbon (SOC) is one of the most important and 
feasible strategies to improve soil quality, increase crop production 
[135], enhance C sequestration, and mitigate GHG emissions [136]. 
Biochars are promising soil amendments and have been extensively 
studied and reviewed [21,137]. Recently, increasing studies evidenced 
that hydrochars can also be promising multifunctional soil amendments 
(Fig. 6). Application of hydrochars can improve soil physical, chemical, 
and biological properties [122,138], enhance C sequestration, [134], 
decrease bioavailability and toxicity of contaminants [53], and restore 
ecosystem structure and function [13,134]. Feedstock and HTC condi-
tions play key roles in the performance of hydrochar application in soil 
improvement [7,122,138]. However, the large variety of feedstocks for 
hydrochar production induces highly varied performance of different 
hydrochars. 

4.1. Effects of hydrochars on soil physical properties 

Degraded soils generally show poor physical characteristics in 
texture, structure, porosity, bulk density, and water holding capacity 
(WHC). Increasing studies reported that hydrochar amendment might 
effectively improve these soil physical properties [122,139]. Heavy 
textured soils (e.g., clayey soils) with significantly low porosity and high 
bulk density (~1.6 g cm− 3) are at high risks of compaction, water-
logging, and erosion [138]. Recent studies demonstrated that hydrochar 
application increased soil porosity by 6.3–11.5% [138], decreased bulk 
density by 8.2–18.9% [140], and promoted the formation and stability 
of soil aggregates [122,137,140]. These positive changes have been 
observed in soils of different textures, such as clay soils [139,140], sandy 
soils [138], and loamy soils [141]. High temperature (≥ 200◦C) 
hydrochars processing rich porous structure and low bulk density 
(0.1–0.2 g cm− 3) are more suitable for improving these soils [32,140]. 
Hydrochar application may also improve soil WHC and thus increase 
plant available water capacity (AWC) due to water retention by 
hydrochar pores [13,130], as well as the enhancement of soil aggrega-
tion [122]. In addition, hydrochar application may increase soil mac-
ropores, thus improve soil drainage [137,139] and water uptake by 
plants [13]. These positive effects are mainly controlled by internal 
porosity, specific surface area, and the hydrophilic surface of hydrochars 
[13]. Char particle size is an important parameter in controlling soil 

Table 2 
Summary of the morphological structure of hydrochars derived from different feedstocks.  

Feedstock HTT (◦C) RT (h) SLR Morphology of hydrochar Reference 

Types Structure and morphology 

Wood sawdust Fibrous, non-porous 220 1.5 1:4 Disordered fibers, slightly porous [123] 
Walnut shell Non-porous 220 1.5 1:4 Circular pores 
Tea stalk Fibrous, non-porous 220 1.5 1:4 Honeycomb shaped, thick-wall pores 
Olive pomace Fibrous 220 1.5 1:4 Presence of channels and thick walled pores 
Apricot seed Layered, non-porous 220 1.5 1:4 Presence of microspheres 
Hazelnut husk Nonporous 220 1.5 1:4 Thick walled and circular pores 
Spent coffee 

grounds 
Rough and irregular surface morphology 180, 200, 

220 
1, 3, 5 1:10 Tunneling, microstructural fragments, enlarged pores [36] 

Corncobs – 230 0.5 1:6 Slightly opened channels, fine pores, microspheres [130] 
Corncobs – 260 0.5 1:6 Fine pores, broken and rough surface with cracks and channels 
Food waste Aggregated matrix, irregular particles, 

few pores, and pathways 
180, 260 1 1:5 Peanut like microparticles, microspheres, porous [34] 

Pine wood Amorphous 180 20 1:8.5 Irregular structure, porous, layered, nanopores, short-range ring 
structure, irregular structure, micrometer particles and pores 

[131] 

Corn stover Micro fibrous, cellulose, semi cellulose 
and lignin chains 

180, 260 4 1:8 Carbon spheres, nano and micro spheres [132] 

Swine manure clustered aggregates and few pore 
structures on its surface 

280, 200, 
220 

10 1:4 Small fragments, different sized pores [116] 

Maize straw Smooth, flat, and highly organized fiber 
structure with few dense pores 

220, 340 0.25, 
0.33 

1:3 Microsphere structures, highly porous [33] 

Sewage sludge – 270 2 1:9 Granular, floc and lamellar structure, honeycomb structure, porous 
structure 

[125] 

HTT: heating temperature; RT: residence time of HTC process; SLR: solid of feedstock to liquid ratio (w/v) during HTC. 

A. Khosravi et al.                                                                                                                                                                                                                               



Chemical Engineering Journal 430 (2022) 133142

9

water retention capacity and permeability [139]. Hydrochars produced 
at high temperatures (≥ 200◦C) usually have smaller particle sizes 
[138,142] and can block soil micropores and simultaneously decrease 
water entrance and retention [13,142]. Moreover, the blockage of soil 
micropores by small-sized hydrochars can result in lower porosity and 
aeration, increasing soil compaction [139,143]. Hydrochar application 
in sandy soils can increase WHC and AWC more effectively than clay and 
loamy soil [13]. Several studies also evidenced that hydrochars 
enhanced the aggregate formation and stability of loamy and clay soils 
[122,134]. On the one hand, surface functional groups of hydrochars 
such as hydroxyl (–OH) and carboxyl (–COOH) triggers the interaction 
of cationic bridges mainly responsible for the formation of micro-
aggregates/macroaggregates in soils [134]. On the other hand, the 
improvement of soil aggregation may have resulted from a variety of 
organic substances such as organic acids and fats produced by soil 
bacteria, fungi, and plant roots [122], which could be enhanced by the 
addition of hydrochars [122]. Moreover, hydrochars can improve soil 
aggregate stability better than biochars due to their richer functional 
groups and mineral contents [134]. 

So far, although positive effects of hydrochars on soil physical 
properties have been demonstrated, huge knowledge gaps regarding the 
responses of soil physical properties to the application of different types 
of hydrochars should be further considered. The effects of interactions 
among soil components such as SOC, minerals, and microorganisms with 
hydrochar particles on soil physical properties are still unclear. Given 
the diversity and complexity of soil environments, the mechanisms un-
derlying hydrochar behavior in soils under different conditions such as 
temperature and moisture require further investigations to establish the 
relationships between the hydrochar characteristics and soil physical 
properties. 

4.2. Effects of hydrochars on soil chemical properties 

Extensive studies have been conducted to investigate the effects of 
hydrochar application on improving the chemical properties of 
degraded soils, such as pH, cation exchange capacity (CEC), electrical 
conductivity (EC), and SOC [143,144]. Depending on feedstock types 
and HTC conditions, hydrochars have been demonstrated to effectively 
improve highly weathered soils with poor chemical properties such as 
high EC and low CEC and SOC [15,143,145,146]. Compared to hydro-
chars, biochars have less effects on soil CEC, due to their inherent lower 
CEC resulted from higher decomposition rate of organic matter during 
pyrolysis [83]. Application of biochars in acidic soils has been exten-
sively studied and highly recommended due to the inherent alkalinity of 
biochars resulted from the concentrated minerals during biomass py-
rolysis [137,147]. Hydrochars, generally having an acidic nature (pH <
7.38) due to the presence of organic acids [1], may effectively decrease 
soil pH (such as alkaline and calcareous soils) [141,145,148], thus 
alleviate salt stress and increase nutrient availability [149]. However, 
Rilling et al. observed an increase in soil pH from 7.2 to 7.6 following the 
application of a hydrochar with pH 4.39 [149]. They attributed the 
increased pH to the proton consuming reduction activities of soil mi-
croorganisms, which decreased the release of acidic metabolites [149]. 
Studies on the application of hydrochars in improving soil EC, an indi-
cator of soil salinity, are very limited [148]. Because of the lower min-
eral contents in hydrochars than biochars, it is reasonable to hypothesize 
that hydrochars would lower EC enhancement than biochars [140,148]. 

Recent studies showed that soil CEC, an indicator of soil capacity for 
retaining and providing nutrients to crops, may increase upon hydrochar 
application [15,54,142]. The ability of hydrochars for increasing soil 
CEC, attributed to the high surface areas and surface O-containing 
functional groups [145], strongly depends on feedstock types, HTC 
conditions, and soil characteristics and interactions [54,141]. Generally, 

Fig. 6. Summary of the issues of the degraded soils and effects of hydrochar application in these soils. Hydrochar amendment can benefit physical, chemical, 
biological, and ecological characteristics of the degraded soils. These improvements can result in high soil fertility, biological activity and diversity, thus increase 
crop productivity and improve ecosystem structure and function. 
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hydrochars derived from lignocellulosic feedstock (e.g., crop straw and 
woody chips) exhibit higher CEC than sewage sludge and municipal 
waste [145,150]. Lower CEC is expected for hydrochars produced at 
higher temperatures (≥ 200◦C) because of decreased reactive functional 
groups [151]. Thus, the plant-derived hydrochars at low temperature (<
200◦C) is more likely to improve soil CEC than the sewage sludge- 
derived hydrochars produced at high temperature (≥ 200◦C) [151]. 
Due to the high diversity of degraded soils and technical limitations for 
functionalizing hydrochar functionality, the application of an individual 
hydrochar might not always achieve the expected positive effects in 
improving soil qualities [152]. The combined application of hydrochars 
with other soil amendments (e.g., compost and lime) and/or chemical 
fertilizers could be an alternative strategy, which warrants future 
exploration. 

4.3. Effects of hydrochars as slow-release fertilizers on soil nutrient 
availability 

Hydrochars generally contain nutrients such as N, P, K, Ca, and Mg 
[102,146] and can be directly used as slow-release fertilizers for plants, 
especially those grown in infertile soils [146,152]. The fertilization 
potential of hydrochars is highly controlled by the feedstock types and 
HTC conditions [141]. For instance, the hydrochars derived from 
manure are richer in nutrients, including N, P, K, Ca, and Mg, than those 
from plant biomass [32]. Hydrochars could directly provide N to crops 
because of their inherent inorganic N (e.g., NH4

+ and NO3
–) and organic 

N (e.g., amino acids, phospholipids, and amino sugars) originated from 
the feedstock such as sewage sludge, animal waste, and plant residues 
(Fig. 2f, 4). Meanwhile, hydrochars can enhance NH4

+ and NO3
– 

retention in soils by sorption via electrostatic attraction and pore-filling 
[26,30]. This results in slow-release of N in soils for plant uptake [152], 
and decreases N leaching from soils [153]. Compared to biochars, 
hydrochars could have higher adsorption capacities for NH4

+ due to 
their abundant O-containing functional groups such as carboxyl and 
ketone groups [154]. Modified hydrochars showed better performance 
for retaining N in soils than the un-modified hydrochar [154], which 
should be further studied in the future. 

The advantage of hydrochar application as P fertilizer outweighs its 
application as an N fertilizer [155]. P in hydrochar, mostly presented in 
Al-associated P and Ca-associated P forms, can provide plant-available P 
over time (Fig. 5a) [112]. For example, Fei et al. reported that a sewage 
sludge-derived hydrochar increased available soil P by 130%. They also 
showed that 86.8% of the available P accounted for 2% of total P in the 
hydrochar released into the soil [151]. While hydrochars are considered 
and applied as slow-release P fertilizers, low-temperature hydrochars (<
200◦C) could release P faster than high-temperature hydrochars (>
200◦C) [156] due to the stabilization of water-soluble P in hydrochar as 
the HTT increases during HTC (Fig. 5b). Notably, little information was 
available for the effects of hydrochar on soil P cycling [151], which 
should be further explored in future. 

More studies regarding the inherent nutrient potential of hydrochars 
and associated effects on soil fertility are still needed. A systematic 
comparison of hydrochars from different feedstocks and HTC conditions 
should be conducted to assess their nutrient availability as slow-release 
fertilizers and predict the potential impacts on soil nutrient availability 
in different soil environments. Additionally, hydrochars as slow-release 
fertilizers would interact with other soil substances such as chemical 
fertilizers and pesticides, affecting their biogeochemical cycling and 
efficiency. Thus, further research is needed to investigate the fertilizing 
potential of hydrochars in the presence of common soil substances. 

4.4. Effects of hydrochars on crop productivity 

Improving soil quality, nutrient availability, and crop productivity 
are the main targets of sustainable agriculture following hydrochar 
application [142,154]. Effects of hydrochar application on plant growth 

are summarized in Table 3. Increased crop productivity following 
hydrochar application is often observed in infertile or degraded soils 
than fertile soils [142]. Effects of hydrochars have been studied on 
various crops such as barley [157], leek [146], beans [143], mastic 
[144], myrtle [144], lettuce [158], rice [159], and alfalfa [122]. The 
positive response of hydrochars in crop productivity, accounting for 
62% of the selected studies (n = 14, Table 3), is mainly attributed to the 
direct supply of essential nutrients in hydrochars for crops [146,154], as 
well as the improvement of soil physical and chemical properties 
[141,142]. If hydrochars stay in soils for long term (e.g., more than three 
months), the plant growth improvement is even better due to the slow 
release of nutrients in hydrochars and their aging effects on native soil 
nutrient availability [157]. 

Hydrochars can also inhibit crop growth and decrease their pro-
duction [146,163]. These negative effects, accounting for 38% of the 
selected studies (n = 14, Table 3), were observed for oat [160], alfalfa 
[122], dandelion [149], sugar beet [163], mastic [144] and leek [146]. 
These studies highlight the potential environmental risks of hydrochar 
as soil amendments. The negative effects of hydrochars on plant growth 
could be attributed to the following reasons. On the one hand, the 
decreased plant growth may be attributed to the adverse effect of 
hydrochars on soil properties such as increasing soil C/N ratios and 
decreasing soil pH, thus leading to the enhanced microbial N immobi-
lization and decreased N uptake by plants [146,163]. On the other hand, 
the negative effects could be ascribed to the inherent contaminants of 
hydrochars, such as heavy metals [144], PAHs, phenols, and furfurals 
[146,163]. Hydrochars derived from sludge, and poultry litter generally 
contain high contents of heavy metals, showing detrimental effects on 
grass seed growth following hydrochar application in soils [102,164]. 
Heavy metals in hydrochars can also be leached to the deep soil and 
pollute groundwater [166]. In these cases, besides selecting the suitable 
feedstock without heavy metal contamination, modification of hydro-
chars could reduce the potential environmental and health risks 
[37,167], which merits further study. For example, Lang et al. found that 
a swine manure hydrochar modified by CaO addition decreased the 
leached amounts of Cu, Zn, and Mn by 93.6%, 89.6%, and 79.8%, 
respectively. They attributed this reduction to the increased surface 
negative charges, surface areas and O-containing functional groups 
[168]. 

Overall, the application of hydrochars for crop production shows 
inconsistent results for various plants, mainly due to the feedstock types, 
HTC conditions, crop species, soil, environmental conditions, and 
complicated interactions. Research efforts are needed to reveal the re-
lationships between the characteristics of hydrochars and the responses 
of different crops, and the functions and mechanisms of hydrochars in 
enhancing plant growth and productivity. It is worth mentioning that 
neither biochars nor hydrochars can meet all the application needs and 
demands in agricultural production. Hence, a suitable hydrochar should 
be used at optimum dosage for a given crop in a specific soil. 

4.5. Effects of hydrochars on soil greenhouse gas emission 

The annual GHG emission from agricultural activities is estimated to 
be 619 million metric tons CO2-equivalent [169], largely contributing to 
global warming. Hence, reduction of GHG emissions from agricultural 
soils is necessary. Promisingly, biochars can sequestrate C in soils for 
hundreds to thousands of years due to their high stability [170]. 
Extensive studies have evidenced the good performance of biochars on 
GHG emissions from various soils [136,171]. Recently, the potential of 
hydrochars in reducing soil GHG emissions has received increasing 
attention [154,163,172]. Emissions of CO2, CH4, and N2O from the soils 
amended with hydrochars were highly variable in paddy soils 
[172,173], eroded agricultural soils [174], and grasslands [136]. 
Generally, hydrochar application increases CO2 [136,175] and CH4 
emission [172-174] from different soils such as forest soils, agricultural 
soils, and grasslands. Higher gas emissions are mainly attributed to the 
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Table 3 
Summarized effects of hydrochar application on plant growth.  

Hydrochar 
feedstock 

HTT 
(◦C) 

RT 
(h) 

Application rate Plant type Response of plant Reference 

Poplar wood 
dust 

200 2 1%, 2.5%, 5% (w/w) Oat (Avena sativa L.) Decreased shoot dry matter by 14–50% [160] 

Maize 
silage 

230 1.25 30t ha− 1 Poplar (Populus alba 
L.) 

Increased shoot dry matter by 37% and shoot length by 20% [161] 

Maize 200 4 0.7% (w/w) Soybean (Glycine 
max) 

Increased total dry biomass by 13%. [162] 

Wood 200 4 0.7% (w/w) Soybean (Glycine 
max) 

No significant effect on dry biomass. 

Spent coffee 
grains 

220 12 5%, 10% (w/w) Alfalfa (Medicago 
sativa) 

Decreased shoot dry biomass by 20–30% Increased leaf tip necrosis by 
400–600%. 

[122] 

Beet root chips 180–200 11 2%, 4%, 10%, 20%, 
30%, 80% (v/v) 

Dandelion 
(Taraxacum) 

Decreased total biomass by 0.5–82% [149] 

Beet root chips 180–200 11 10% (v/v) Clover (Trifolium) Decreased shoot dry weight by 36%, number of leaves by 9% and root dry 
weight by 44%. 

Beet root chip 190 4 2%, 4%, 10% (v/v) Summer barley 
(Hordeum vulgare) 

Increased shoot dry matter yield by 4.0%, 6.0% and 0.2% respectively. [146] 

Beet root chip 190 12 2%, 4%, 10%  
(v/v) 

Summer barley 
(Hordeum vulgare) 

Increased shoot dry matter yield by 32%, 46% respectively in 2 and 4% 
hydrochar application respectively. Decreased dry biomass production by 
3.0 % in 10% hydrochar application. 

Beet root chip 190 4 2%, 4%, 10% (v/v) Phaseolus beans 
(Phaseolus) 

Increased shoot dry matter yield by 88%, 147% and 37% respectively. 

Beet root chip 190 12 2%, 4%, 10% (v/v) Phaseolus beans 
(Phaseolus) 

Increased dry matter yield by 53%, 107% and 61% respectively. 

Beet root chip 190 4 2%, 4%, 10% (v/v) Leek (Allium 
ampeloprasum) 

Decreased shoot dry matter yield 3%, 10% and 77% respectively. 

Beet root chip 190 12 2%, 4%, 10% (v/v) Leek (Allium 
ampeloprasum) 

Increased shoot dry matter yield by 61%, 25% in 2% and 4% hydrochar 
treatment respectively.Decreased dry biomass production by 1% in 10% 
hydrochar treatments. 

Spent brewer 
grain 

190 4 2%, 4%, 10% (v/v) Summer barley 
(Hordeum vulgare) 

Increased shoot dry matter yield, by 31%, 26% and 29% respectively. 

Spent brewer 
grain 

190 12 2%, 4%, 10% (v/v) Summer barley 
(Hordeum vulgare) 

Increased shoot dry matter yield by 32%, 17% and 1% respectively. 

Spent brewer 
grain 

190 4 2%, 4%, 10% (v/v) Phaseolus beans 
(Phaseolus Vulgaris) 

Increased shoot dry matter yield by 14%, 60% and 103%, respectively. 

Spent brewer 
grain 

190 12 2%, 4%, 10% (v/v) Phaseolus beans 
(Phaseolus Vulgaris) 

Increased shoot dry matter yield by 59%, 58% and 52% respectively. 

Spent brewer 
grain 

190 4 2%, 4%, 10%  
(v/v) 

Leek (Allium 
ampeloprasum) 

Decreased the shoot dry matter yield by 34%, 22% and 65%-respectively. 

Spent brewer 
grain 

190 12 2%, 4%, 10% (v/v) Leek (Allium 
ampeloprasum) 

Increased shoot dry matter yield by 4% in 2% hydrochar treatments. 
Decreased dry biomass production by 15% and 64% in 4% and 10% 
hydrochar treatments. 

Sugar beet pulp 190 12 1.32% (w/w) Sugar beet (Beta 
vulgaris L.) 

Decreased yield by 97% and plant total N content by 25%.Increased total 
plant P content by 10%. 

[163] 

Beer draff 190 12 1.32% (w/w) Sugar beet (Beta 
vulgaris L.) 

Decrease dry matter yield by 40% and plant total N content by 8%. 
Increased total plant P content by 2%. 

Forest wastes – – 50% (v/v) Myrtle (Myrtus 
communis L.) 

Decreased seed germination by 23%, seedling survival by 22%, and stem 
dry weight by 75%. 

[144] 

Forest wastes – – 25% (v/v) Myrtle (Myrtus 
communis L.) 

Decreased seed germination by 6%, seedling survival by 5%, and stem dry 
weight by 56%, respectively. 

Forest wastes – – 10% (v/v) Myrtle (Myrtus 
communis L.) 

Increased seed germination by 13%.Decreased seedling survival by 22% 
and stem dry weight by 61%. 

Forest wastes – – 50% (v/v) Mastic (Pistacia 
lentiscus L.), 

Decreased seed germination by 34%, seedling survival by 37%, and stem 
dry weight by 48%. 

Forest wastes – – 25% (v/v) Mastic (Pistacia 
lentiscus L.) 

Decreased seed germination by 21%, seedling survival by 13%, and stem 
dry weight 28%. 

Forest wastes – – 10% (v/v) Mastic (Pistacia 
lentiscus L.) 

Increased seed germination by 18%.Decreased seedling survival by 12%, 
and stem dry weight by 11%. 

Sewage sludge 200 0.5 0.8%, 4% (w/w) Grass seeds (Lolium 
perenne) 

Increased dry biomass by 40–95%. [164] 

Sewage sludge 200 3 0.8%, 4% (w/w) Grass seeds (Lolium 
perenne) 

Increased dry biomass by 42–85%. 

Sewage sludge 260 0.5 0.8%, 4% (w/w) Grass seeds (Lolium 
perenne) 

Increased dry biomass by 42% for 4% hydrochar application. 
No significant effect on dry biomass for 0.8% hydrochar application. 

Sewage sludge 260 3 0.8%, 4% (w/w) Grass seeds (Lolium 
perenne) 

Decreased dry biomass by 1% and 5% respectively. 

Biosolid from 
WWTP 

190 4 0.8%, 1.6%  
(w/w) 

Phaseolus beans 
(Phaseolus Vulgaris) 

Increased total dry biomass by 96–112%. [142] 

Miscanthus and 
giganteus 

200 2 14.5t ha− 1 Perennial ryegrass 
(Lolium perenne) 

Increased dry biomass by 32%. [136] 

Beet root chip 180–200 11 1%, 10% (v/v) Plantain (Plantago 
lanceolata) 

Increased dry biomass by 60% for 10% hydrochar application.No 
significant effect on shoot and root dry biomass by 1% hydrochar 
application. 

[165] 

Poultry litter 180 1 0.5%, 1% (w/w) Increased shoot dry matter by 145–146%. [158] 

(continued on next page) 
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high contents of labile C in hydrochars, providing extra substrates for 
soil microorganisms such as actinomycetes, fungi, N-fixing bacteria, and 
methanogens [172-174]. Hydrochars produced at high temperature (≥
200◦C) containing less labile C and more aromatic C, may release less 
CO2 compared to the hydrochars produced at low temperature (<
200◦C) [47,86,175]. Washing hydrochars to remove the labile C fraction 
before their applications could decrease CO2 emissions due to the 
inherent labile C [172]. Moreover, hydrochar modification can signifi-
cantly decrease CO2 emission from soils. Vieillard et al. observed that a 
hydrochar modified by grafting aminosilane increased the CO2 adsorp-
tion via intraparticle diffusion [176], which showed good potential in 
effectively decreasing CO2 emission from soils. 

CH4 emission originated from human activities (e.g., coal mining, 
biomass burning, and garbage disposal) accounts for 20% of the global 
anthropogenic warming effect [170]. To date, only a few studies re-
ported the effects of hydrochars on CH4 release from soils [159,177], 
and most of these studies focused on paddy soils [172,173,178]. They 
found that hydrochars showed inconsistent effects on CH4 emission, 
including promotion [172,173], inhibition [177,178], and no effect 
[159]. For example, Ji et al. reported that the application of hydrochars 
derived from rice straws at 200, 250  and 300◦C into a paddy soil 
increased the cumulative CH4 emission by 150–430% [37]. They 
explained the enhanced emission by the released labile organic carbons 
of the hydrochars and shifted microbial communities to CH4-producing 
communities (e.g., Euryarchaeota, Janibacter, Anaeromyxobacter, Anae-
rolinea, and Sporacetigenium). Consistently, they further observed that 
the corresponding water-washed hydrochars had little effect on CH4 
emission from the same paddy soil. Therefore, it would be necessary to 
pretreat (e.g., washing) hydrochars before their applications, which 
could be an efficient method to avoid the enhanced CH4 emission from 
paddy soils [172,178]. Another study reported that the higher rate (3%) 
of hydrochar application results in a larger amount of CH4 emission 
relative to a lower rate (0.5%) application due to the high content of 
labile C available for methane producing microorganisms [173]. On the 
contrary, Chen et al. observed that a poplar sawdust derived hydrochar 
applied at 0.5% into a paddy soil fertilized with urea inhibited the cu-
mulative CH4 emissions by 14.8%, mainly due to the reduced expression 
of the methanogenic mcrA gene [173]. However, little information is 
available on the effect of hydrochars on CH4 emission from natural 
wetlands such as coastal wetlands and estuarine areas, important parts 
of blue C ecosystems, which should receive more efforts in future 
studies. 

Application of biochars as soil carbon sequestration materials has 
attracted a great deal of worldwide attention in past decades as a 
strategy for CO2 mitigation [179-182], because of their high recalci-
trance against microbial decomposition and negative priming effects on 
native SOC [171,182-184]. Thus, the high temperature biochars are 
preferentially recommended from a C sequestration perspective [185]. 
However, the application of hydrochars for sequestrating CO2 in soils is 
still at infancy, and the limited studies showed the controversial effects 
[136,174,186]. For example, Sun, et al. found that hydrochar addition at 
0.5% and 1.5% decreased the labile SOC fraction by 15.6–33.6% and 
increased the stable SOC fraction by 10.3–27.0% in a paddy soil [145]. 
Furthermore, they found that SOC in the hydrochar-amended soils 
contained more aromatic compounds but fewer carbohydrates and 
lower polarity. Accordingly, they demonstrated that hydrochars could 

have low carbon sequestration potentials from a long-term perspective, 
because of their high decomposability and positive priming effects on 
the mineralization of native SOC. Moreover, Malghani et al. reported 
that 33 ± 8% of the added corn silage hydrocar C was lost from two 
coarse and fine textured soils after one year incubation, but the 
hydrochar-amended soils preserved 15 ± 4% more native SOC relative 
to the controls, showing negative priming effects [187]. This study 
highlighted soil C sequestration potential of hydrochar at least on 
decadal timescales. However, these studies only considered limited soil 
type under controlled laboratory incubation conditions in the relatively 
short-term scale. Therefore, the benefits of hydrochars in C sequestra-
tion should be carefully examined in future, and long-term laboratory 
and field-scale investigations with more types of soils and hydrochars 
should be explored. 

Effects of biochar applications on N2O emission from soils were well 
documented [136,188]. A meta-analysis (n = 88) reported that the 
overall N2O emissions reduction in soils following biochar applications 
was 38%, and biochar strongly reduced N2O emission in paddy and 
sandy soils [188]. To date, limited studies investigated the effects of 
hydrochar application on soil N2O emissions, and these results were 
inconsistent [26,175,189]. Several reports indicated that hydrochars 
lowered the soil N2O emissions due to the increased sorption of NH4

+

and NH3 by pore-filling and electrostatic attraction of hydrochars 
[136,175]. Additionally, the enhanced N immobilization [26,190] and 
decreased nitrifying and denitrifying enzyme activities have been re-
ported [190]. For instance, a study reported that a hydrochar produced 
from beet chip at 200 ◦C significantly decreased the activity of denitri-
fication enzymes, which was ascribed to the decreased active sites of 
enzymes resulted from the surface adsorption on the hydrochchar 
[161,174,191,192]. Similarly, a poplar hydrochar produced at 180 ◦C 
was reported to inhibit the activity of nitrification enzymes, probably 
due to the leaching of toxic substance (e.g., polycyclic aromatic hydro-
carbon) from the hydrochar [161,174,191,192]. The high content of 
labile C in hydrochars provides more energy to the heterotrophic de-
nitrifiers, resulting in full reduction of N2O to N2, thus mitigating N2O 
emission [136,175]. On the contrary, a few studies also reported that 
hydrochars increased N2O emission from paddy fields [175,189], which 
were dominated by denitrification. Hydrochars can increase the activity 
of denitrifying bacteria and consequently enhance denitrification [189]. 
However, N2O emission from the hydrochar amended soils is still not 
well known, and the key characteristics of hydrochars in determining 
soil N2O emission are not clear. Moreover, all these studies examining 
the effects of hydrochars on GHG emission are limited to laboratory or 
greenhouse scale, which cannot reflect practical environmental condi-
tions. Thus, future studies should be conducted on GHG emission from 
soils amended with hydrochars at field scale under different climatic 
conditions (e.g., drought, flood). 

4.6. Effects of hydrochars on soil microbial communities 

Soil microbial community has been largely studied to assess soil 
quality since they can play significant roles in soil health, fertility, and 
productivity [149]. Extensive studies have been conducted regarding 
the effects of biochars on soil microbial communities [23,193]. How-
ever, studies on hydrochar interactions with soil microbes are very 
limited. Results from several studies indicated that application of 

Table 3 (continued ) 

Hydrochar 
feedstock 

HTT 
(◦C) 

RT 
(h) 

Application rate Plant type Response of plant Reference 

Lettuce (Lactuca 
sativa) 

220 
250 

Sawdust 260 1 5%, 15% (w/w) Rice (Oryza sativa) Increased grain yield by 16.6–19.3%. [159] 

HTT: heating temperature; RT: residence time of HTC process. 
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hydrochars to the soil increased the abundance of archaea and bacteria 
(e.g., Bacillus). Other changes in microbial community included a 
motivated spore germination of arbuscular mycorrhizal fungi 
[148,149], and increased bacterial and archaeal diversity and activity 
[175]. For example, Sun et al. found that the application of both 
hydrochars from poplar wood dust and wheat straw increased fungi 
diversity but decreased bacterial diversity in paddy soil [145]. They 
suggested that the acidic nature (pH 3–5) of hydrochars is more favor-
able for fungi growth and activity, while bacterial species mostly prefer 
neutral conditions. These effects were attributed to the high contents of 
nutrients, labile C fractions of hydrochars [23]. Owing to the charac-
teristics of abundant pores and high specific surface areas, hydrochars 
could also provide good habitats for soil microbial colonization and 
prevent bacteria leaching from soil or consumption by predators [148]. 
Notably, hydrochars may adversely affect soil microbial growth due to 
the release of toxic substances. For example, a study revealed that a 
hydrochar produced from sewage sludge at 180◦C containing high 
content of heavy metals decreased the microbial activities and popula-
tion abundance in a soil [194]. Also, these toxic compounds in hydro-
chars could also pose toxic effects on soil animals, such as altering the 
ecological behavior of earthworms [195], decreasing the abundance of 
collembola Protaphorura fimata [196], and reducing feeding and growth 
of soil terrestrial isopod (Porcellio scaber) [197]. Therefore, more tar-
geted studies are still needed to avoid the potential of ecological risk 
prior to the practical applications of hydrochars into soil ecosystems. 
Additionally, the direct effects of hydrochars on soil properties, such as 
pH, CEC, WHC, and bulk density, may also indirectly influence the soil 
microbial community [198]. For example, a sandy loam soil amended 
with a pine sawdust hydrochar produced at 200◦C could hold more 
water in the pores under dry conditions and thus prevent microbial 
dormancy and death [54]. Moreover, various soils and types of hydro-
chars need to be evaluated to compare the microbial response in the 
rhizosphere and bulk soils amended with hydrochar, which has been 
ignored in the past. 

5. Application of hydrochars in environmental remediation 

Hydrochars have been extensively studied as low-cost sorbents for 
contaminant removal from soil [199] and water [15,17,19,200]. The 
high sorption capacities of hydrochars can be utilized for the remedia-
tion of heavy metals and organic pollutants in terrestrial [199] and 
aquatic environments [29]. Surface area, porosity, functional groups, 
aromaticity, polarity, and mineral components are the critical charac-
teristics influencing the adsorption capacities of hydrochars to various 
pollutants [7,13,22]. 

5.1. Inorganic contaminants 

5.1.1. Heavy metals 
Hydrochar application in soils and waters can decrease the avail-

ability and toxicity of heavy metals to plants [102] and microbes 
[15,21,102,200]. Recent studies have successfully applied different 
hydrochars derived from various plant materials and municipal wastes 
to remediate the pollution of heavy metals such as Cu, Pb, Cd, and Zn in 
soils and waters (Table S3). The decreased bioavailability and toxicity of 
heavy metals were mainly due to specific and non-specific adsorption 
mechanisms, including pore filling [17,200], cation-π bonding [201], 
precipitation/co-precipitation [166], complexation [37,166], ion ex-
change [19], and electrostatic attraction [200]. Porous structure, highly 
reactive O-containing functional groups (e.g., hydroxyl, carboxyl), and 
aromatic surfaces of hydrochars can benefit heavy metal adsorption in 
soils and waters [27,201-203]. Surface functional groups trigger ion 
exchange of heavy metals with cations such as Ca2+ and Mg2+ on 
hydrochars [19], thus, hydrochars generally have higher adsorption 
affinities for heavy metals relative to biochars [166,167]. Alcohols, al-
dehydes, ketones, carboxylic, phenolic, and ether groups on hydrochar 

surfaces can form complexes with heavy metals by donating electron 
pairs [19,166]. Precipitation or co-precipitation of heavy metals with 
minerals (e.g., phosphates and carbonates) in hydrochars is another 
important mechanism responsible for heavy metal remediation [29]. For 
example, the P-rich hydrochars derived from animal manure resulted in 
the precipitation of Pb as Pb10(PO4)6(OH)2 and Ca2Pb8(PO4)6(OH)2 in 
the contaminated soils [204]. Also, modification of hydrochars using 
catalysts such as acids (e.g., HNO3, H3PO4) and bases (e.g., KOH) is a 
feasible strategy to enhance heavy metal sorption or immobilization in 
soils and waters [27,167]. 

Besides direct adsorption of heavy metals, hydrochars can also 
indirectly enhance adsorption or immobilization of heavy metals in soils 
by affecting soil properties [205]. Hydrochar application can increase 
soil CEC, naturally results in more cation exchange sites in the soil for 
heavy metal adsorption via cation exchange [15,31]. Accordingly, 
increasing soil CEC by hydrochar application is recommended to 
decrease the availability and toxicity of heavy metals [102]. Moreover, 
hydrochar application increases SOC content, which decreases the 
mobility and bioavailability of heavy metals due to their complexation 
with SOC [53]. For example, Xia et al. found that an amino- 
functionalized hydrochar derived from pinewood sawdust at 200 ◦C 
significantly increased soil CEC by 8% and SOM by 59.6%, and 
decreased heavy metal contents in plants by 45.9–52.5% [15]. There-
fore, modification of hydrochars to increase their adsorption capacities 
has been proposed as an effective strategy to enhance their efficiencies 
in heavy metal remediation. Chemical modification using acidic and 
alkaline reagents (e.g., HNO3, KOH) and oxidizing agents (e.g., H2O2) 
was generally used to increase the species and abundances of surface O- 
containing functional groups and surface area [7,37,53]. Notably, 
modification of hydrochars should be conducted based on the target of 
their specific applications, which should be further explored. 

5.1.2. Nutrients 
Nutrient pollution such as NO3

–, NH4
+, and PO4

3- in waters has 
caused great concerns because of the eutrophication and toxicity 
[30,31]. Biochars as low-cost adsorbents can effectively remove these 
contaminants from waters [21], enhance their sorption and decrease 
their leaching from soilssoil due to the adsorption via pore-filling [170], 
electrostatic interaction [170], ion exchange [206], and precipitation 
[206]. These studies have been well-reviewed [21,170]. However, only 
a few studies examined the applications of hydrochars in the remedia-
tion of water polluted by NO3

–, NH4
+, and PO4

3- (Table S4S3). The 
sorption mechanisms of hydrochars for NO3

– and NH4
+ include ion ex-

change, electrostatic attraction, hydrogen bonding, and surface 
complexation [30,31]. A review summarized PO4

3- adsorption capac-
ities of a series of hydrochars derived from feedstocks under different 
HTC conditions, ranging 14–386 mg g− 1, whereas the adsorption ca-
pacities for biochars ranged 3–887 mg g− 1[115]. The sorption mecha-
nisms of hydrochars for PO4

3- include precipitation, electrostatic 
attraction, and ion exchange [30]. Compared to biochars, hydrochars 
have less abilities to remediate excessive nutrients in waters due to the 
lower adsorption capacities and higher inherent nutrient contents 
[22,30]. This would weaken the remediation efficiency of hydrochars in 
aquatic environments [22,32]. Factors affecting nutrient sorption by 
hydrochars include hydrochar properties (e.g., surface area, surface 
functional groups, and CEC) and environmental conditions (e.g., pH, 
organic matter) [30,207]. HTT is a critical factor affecting hydrochar 
properties [22] and adsorption capacities for nutrients [32]. For 
example, Fei et al. reported that the hydrochar produced from sludge at 
250 ◦C had a higher adsorption capacity (21.8 mg g− 1) for PO4

3- than the 
hydrochar produced at 150 ◦C (15.8 mg g− 1) [151]. Hydrochars pre-
pared from the nutrient-rich feedstocks such as sewage sludge and ani-
mal manure at low temperature (< 250 ◦C) usually have less adsorption 
capacities to NO3

–, NH4
+, and PO4

3- because of their high contents of 
these nutrients [30]. Thus, these hydrochars would be less suitable for 
nutrient remediation in waters. In this case, the feedstocks (e.g., saw 
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dust, woody chips) with low nutrient contents are warranted for pre-
paring hydrochars with efficient adsorption capacities towards these 
nutrients [115]. By contrast, the hydrochars prepared at high temper-
ature (> 250 ◦C) may play better roles in the adsorption of NO3

–, NH4
+, 

and PO4
3- due to the higher surface areas and less nutrient contents 

[208]. Still, hydrochars generally possess relatively lower adsorption 
capacities compared with biochars containing developed pore structures 
and great surface areas. Furthermore, several modification methods 
used to enhance the hydrochar adsorption capacities have been re-
ported, including chemical impregnation or doping, calcination, elec-
trochemical modification or a combination of one or more technologies 
[62,209]. For example, the hydrochars modified with sulfuric acid 
increased their microporosities, specific surface areas, and negative 
surface charges, thus providing more adsorption sites for NH4

+ [154]. A 
modified sewage sludge derived hydrochar by Mg-citrate and H2SO4 
showed better performance for retaining soil N than the un-modified one 
due to the enhanced NH4

+ adsorption resulted from the increased sur-
face areas and carboxyl groups [101]. Although the pristine hydrochars 
generally have low P adsorption capacities due to the electrostatic 
repulsive interaction between them [210], increasing evidences showed 
that the chemical modification could enhance P adsorption performance 
of hydrochars. For instance, a hydrochar derived from waste corncob 
modified by MgCl2 showed a higher adsorption capacity to PO3

4- 

compared with the un-modified control [211]. These enhanced 
adsorption capacities for PO4

3- were mainly ascribed to electrostatic 
interaction, ion exchange, pore filling, complexation, and precipitation 
[31,211,212]. However, compared to biochars, studies regarding 
nutrient remediation are still very limited for hydrochars. Future studies 
are warranted to focus on the interactions of hydrochars from different 
feedstocks and HTC conditions with more nutrient pollutants in the 
water environment in practical application (e.g., constructed wetlands, 
biofilter, and green roof). 

5.2. Organic pollutants 

5.2.1. Removal of organic pollutants in water 
Water pollution by organic chemicals such as pesticides, pharma-

ceuticals, dyes, personal care products, endocrine disruptors, flame re-
tardants, and volatile organic compounds (VOCs) has caused great 
concerns globally [27,213]. Because of high porosity and rich O-con-
taining functional groups, hydrochars have been proposed as promising 
adsorbents for many organic pollutants, including antibiotics, pesti-
cides, dyes, fumigants, and polycyclic aromatic hydrocarbons (PAHs) 
(Table S5). Sorption of organic pollutants by hydrochars mainly attri-
butes to pore filling [214], surface complexation [19,28], electrostatic 
interaction [214], π-π interaction [27-29], hydrophobic interactions 
[104], H-bonding [27,28], and ion exchange [215]. Surface areas, pore- 
volumes, and O-containing functional groups are critical factors con-
trolling organic pollutant adsorption capacities by hydrochars [216]. 
Hydrochars with rich O-containing functional groups show high affin-
ities for dyes [27], pharmaceuticals [29], and pesticides [217] because 
of H-bonding and surface complexation between O-functional groups 
and these chemicals [27,28,53]. These potential mechanisms are similar 
to biochars, which have been well-reviewed previously [21,170]. Water 
conditions, including pH, ions type and strength, and dissolved organic 
matter (DOM), largely affect the adsorption of organic pollutants by 
hydrochars in the water environment [29]. 

Hydrochars may also degrade organic pollutants (e.g., antibiotics, 
dyes) in waters [20]. Application of hydrochars in the presence of 
daylight can increase the generation of reactive oxygen species (ROS) in 
water via transferring electrons to dissolved O, which can further react 
with H+ and produce H2O2, thus enhancing oxidative degradation of 
organic pollutants [20,218]. For example, Chen et al. found that a 
hydrochar derived from Platanus acerifolia leaf and woodchips released a 
large amount of H2O2 and •OH from photoactive surface O-containing 
functional group under daylight irradiation. The change in H2O2 and 

•OH was six times higher compared with dark condition [20]. Degra-
dation of organic pollutants is also attributed to the formation of 
persistent free radicals (PFRs) formed on the surface of hydrochars 
during HTC [131] and biochars during pyrolysis [219]. PRFs, acting as 
electron donors, lead to ROS generation and subsequent degradation of 
organic contaminants [131]. However, studies in photodegradation of 
organic pollutants by hydrochar application in water remediation are 
still limited. More research needs to be conducted to fully understand 
the roles of ROS and PFRs of hydrochars derived from different feed-
stocks in the degradation of different organic pollutants in practical 
water remediation. 

5.2.2. Remediation of organic pollutants in soil 
Soil contamination by organic compounds such as pesticides, bio-

cides, pharmaceuticals, flame retardants, surfactants, and dyes, greatly 
threaten soil health and food safety [220,221]. Soils, as one of the most 
complex environments, is more difficult to remediate than water due to 
various elemental and organic components, different living organism’s 
habitat, and environmental conditions [221]. Many studies have 
investigated the remediation potential of biochars for different soils 
contaminated by various pollutants such as pesticides, antibiotics, PCBs, 
PAHs [206,222], which have been well reviewed [21,220]. Recently, 
several studies reported the remediation of polluted soils using hydro-
chars (Table S3). Hydrochars can increase the sorption capacity of soils 
to organic contaminants and consequently decrease the bioavailability 
and toxicity of these compounds to plants and microbes [53]. Pesticides, 
one of the most important organic pollutants in agricultural soils due to 
their excessive usage and low efficiency [217], have raised great 
attention in soil remediation using hydrochars [199]. Hydrochars can 
decrease the mobility of pesticides such as aldrin, chlordane, dichlor-
odiphenyl trichloroethane (DDT), dieldrin, endrin, heptachlor, hexa-
chlorobenzene, mirex, and toxaphene in soils [199,217,223]. The 
potential remediation mechanisms of organic contaminants in soils 
following hydrochar application are jointly contributed by the adsorp-
tion of organic contaminants onto the hydrochars [104,217] and the 
enhanced biodegradation of the organic pollutants by microbes [223]. 
Hydrochars may increase soil microbial abundances and activities 
[175], and enhance plant growth and excretion of root exudates [142], 
thus resulting in the enhanced degradation of organic pollutants in soils 
[223]. However, little information is available on the chemical degra-
dation of organic contaminants in soils via PFRs of hydrochars, which 
have been well-reported for biochars [21,219]. Hence, the degradation 
of organic contaminants in soils aided by PFRs of hydrochars should be 
considered in future studies. The rhizosphere plays a key role in plant 
growth and nutrients uptake. Thus, more studies are needed to focus on 
the fate of organic pollutants in the rhizosphere following hydrochar 
application. Overall, amending soils with hydrochars can increase the 
adsorption capacities of organic pollutants, thus decreasing their avail-
abilities and toxicities. However, the fate of hydrochars in soil and water 
environments needs to be further studied to gain a full insight into the 
long-term consequences. Notably, hydrochars may also carry toxic 
compounds such as heavy metals, phenols, hydroxymethylfurfural, and 
furans [157]. Thus, understanding the environmental risks of hydro-
chars is also crucial to its successful application in soil and water 
remediation. 

6. Current gaps and future perspectives 

With the increasing studies on the production, characterization, and 
application of hydrochars in soil improvement and environmental 
remediation, there are still several gaps needed to be filled in the future. 
Several suggestions on the future development of hydrochar technology 
are proposed. 

(1) Production and characterization: Although a wide variety of 
biomass (particular wet biowaste) with different chemical compositions 
are applicable in hydrochar production, there is inadequate information 
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with respect to the transformation of these biomass for hydrochar for-
mation, elemental composition, surface structure and reactivity during 
HTC. Moreover, the blended feedstock for hydrochar production and 
characterization is still limited. Hence, more detailed comparative 
studies on hydrochars produced from different single or blended feed-
stocks should be conducted to establish the relationships between the 
physicochemical properties of hydrochar and their feedstocks and HTC 
conditions. Also, the formation mechanisms of hydrochars from 
different feedstocks under different HTC conditions using different ad-
ditives still need to be illustrated. 

(2) Application in soil improvement: Although hydrochars show 
promising potential in improving soil quality and productivity, different 
types of soils need to be used and studied. Besides the fertilization po-
tential of hydrochars, more research is needed to obtain insights into the 
effects of hydrochar on more categories of soil properties, including soil 
structure, salinity, microbial community, and soil animals, particularly 
in the rhizosphere soils. Moreover, the benefits of hydrochars in miti-
gating GHG emissions and enhancing C sequestration should be fully 
assessed in future with long-term laboratory and field-scale 
investigations. 

(3) Application in water and soil remediation: Although hydrochar 
showed great potentials in remediating organic and inorganic pollutants 
in soil and water environments, there is still a lack of knowledge 
regarding the effects of hydrochars on bioavailability and stabilization 
of contaminants in the environment over a long-term. Longer-term 
studies are necessary to examine the stability of contaminants adsorbed 
or immobilized by hydrochar in water and soil environments. More 
contaminants, particularly for emerging contaminants such as flame 
retardant, plasticizer, and pathogenic microorganisms, need to be 
considered in future studies. Moreover, to avoid or minimize the 
possible risks of hydrochar during water and soil remediation, hydro-
chars with minimal toxic components should be carefully selected. 
Notably, the potential environmental and ecological risks of hydrochar 
regarding contamination and adverse interaction with water and soil 
biota need to be carefully assessed before any large-scale application. 

(4) Industrialization and marketization: Despite the rapid development 
and application, the use of hydrochar is still an emerging field. Most 
studies have been limited to the laboratory scale. There is still no in-
dustrial production or utilization unit now. Hence, more efforts are 
needed to examine the feasibility of hydrochar production and appli-
cation at industrial scale and to develop commercial and large-scale HTC 
technology. Future research on reactor design, catalysts and process 
water recycling is recommended to overcome technological and eco-
nomic constraints. The application of solar energy, continuous reactors, 
and deep learning techniques can be expected. 

(5) Environmental and ecological risks: The potential environmental 
and ecological risks of hydrochars should be further assessed from a 
perspective of the whole life cycle of hydrochars, including feedstock 
collection and transport, production using HTC, post-treatment and 
transport, and application in soils and waters. For example, fine particles 
like nano hydrochars can be produced and easily released into sur-
rounding environments during the production and application, but the 
potential risks of these fine particles are still not clear. Studies also need 
to develop effective technologies to treat or recycle the process water 
during HTC in order to decrease the potential environmental risks and 
costs of hydrochars. Moreover, more studies are merited to examine the 
environmental and ecological risks of hydrochars containing potential 
toxic components prior to the practical applications into soil and water 
ecosystems. 

7. Conclusions 

The development of sustainable thermal technologies for high-value 
utilization of biomass waste, particularly for the wet biowastes, are 
necessary to mitigate environmental challenges and sustain manage-
ment of solid wastes in a circular economy approach. Hydrochars from 

biomass using HTC are promising solutions for these issues. In this re-
view, the current research progress of hydrochars were presented, and 
the feedstock, HTC technology, characteristics, application of hydro-
chars in soil improvement and environmental remediation were dis-
cussed in comparison with biochars, a type of char materials produced 
from pyrolysis of dry biomass. Hydrochar production from HTC is a 
promising way to manage dry and wet biowastes sustainably. Hydro-
chars can offer tremendous advantages to the agricultural and envi-
ronmental fields, including soil improvement, crop productivity 
enhancement, and environmental remediation. Hydrochars can be 
considered as a tool for improving soil health by directly providing 
essential nutrients and indirectly improving soil physical and chemical 
properties and microbial community. Hydrochars also offer tremendous 
benefits for remediating polluted water and soil via adsorption and 
degradation. Based on these, hydrochar technology has showed the 
promising prospects in application in soil and environmental sectors, 
and more studies are warranted in future to fill the gaps in the pro-
duction and application of hydrochars. 
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